

Radio Measurement and Test Report

For

Tersus GNSS Inc.

	EN 301 008 1 \/7 1 1 (2015 03)				
Test Standard(s):	EN 301 908-13 V7.1.1 (2017-07)				
Product Description:	TR600 industrial wireless router				
Tested Model:	<u>TR600</u>				
Report No.:	BSTXD190812535401RF-1				
Tested Date:	2019-10-08 to 2019-10-11				
Issued Date:	<u>2019-10-11</u>				
Tested By:	Cindy Zheng / Engineer	Cindy theng			
Reviewed By:	Haley Wen / EMC Manager	Hacey were			
Approved & Authorized By: Prepared By:	<u>Mike Mo / PSQ Manager</u>	APPROVED S			
BST Testing (Shenzhen) Co.,Ltd.					
No.7,New Era Industrial Zone,Guantian,Bao'an					
Distri	District,Shenzhen,Guangdong,China				
Tel: 86- 755-26508703 Fax: 86- 755-26508703					

Note: This test report is limited to the above client company and the product model only. It

TABLE OF CONTENTS

1. GENERAL INFORMATION	4
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
1.2 TEST STANDARDS	
1.5 TEST FACILITY	
1.5 Environmental conditions for testing	
2. SUMMARY OF TEST RESULTS	
3. ESSENTIAL RADIO TEST SUITES	9
3.1 Transmitter maximum output power	9
3.1.1 Definition and applicability	9
3.1.2 Conformance requirements	9
3.1.3 Set up for testing	
3.1.4 Test result	
3.2.1 Definition and applicability	
3.2.2 Comonitative requirements	۱۱ 12
3.2.4 Test result	
3.3.1 Definition and applicability	
3.3.2 Conformance requirements	
3.3.3 Set up for testing	
3.3.4 Test result	14
3.4 Transmitter minimum output power	15
3.4.1 Definition and applicability	
3.4.2 Conformance requirements	
3.4.3 Set up for testing	
3.4.4 Test result	
3.5 Receiver adjacent channel selectivity	
3.5.1 Definition and applicability	
3.5.2 Conformance requirements.	
3.5.3 Set up for testing	
3.6 Receiver blocking characteristics	
3.6.1 Definition and applicability	
3.6.2 Conformance requirements	20 22
3.6.4 Test result	
37 Receiver sourious response	
2.7.1 Definition and applicability	
3.7.2 Conformance requirements	
3.7.3 Set up for testing	26
3.7.3 Test result	
3.8 Receiver intermodulation charactistics	
3.8.1 Definition and applicability	
3.8.2 Conformance requirements	
3.8.3 Set up for testing	
3.8.4 Test result	
3.9 Receiver spurious emissions	
3.9.2 Conformance requirements	

3.9.3 Set up for testing	
3.9.4 Test result	
3.10 Transmitter adjacent channel power leakage ratio	
3.10.1 Definition and applicability	
3.10.2 Conformance requirements	
3.10.3 Set up for testing	
3.110.4 Test result	
3.12 Radiated emissions	
3.12.1 Definition and applicability	
3.12.2 Conformance requirements	
3.12.3 Set up for testing	
3.12.4 Test result	
3.13 Control and monitoring functions	
3.13.1 Definition and applicability	
3.13.2 Conformance requirements	
3.13.3 Set up for testing	
3.13.4 Test result	
EXHIBIT 2 - EUT PHOTOGRAPHS	40

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information	
Applicant:	Tersus GNSS Inc.
Address of applicant:	Room 205, Building 2, Lane 666, Zhangheng Road, Pudong District, Shanghai
Manufacturer:	Tersus GNSS Inc.
Address of manufacturer:	Room 205, Building 2, Lane 666, Zhangheng Road, Pudong District, Shanghai

General Description of EUT				
Product Name:	TR600 industrial wireless router			
Brand Name:	Tersus			
Model No.:	TR600			
Adding Model(s):	N/A			
Rated Voltage:	AC 100-240V 50/60Hz			
Battery Capacity:	N/A			
Adapter Model:	N/A			
Software Version:	V1.0			
Hardware Version:	V1.0			
Note: The test data is gathered from a production sample, provided by the manufacturer. The product				
have two SIM. Test is carry on SIM1 which is the worst case				

Technical Characteristics of EUT				
4G				
Support Bands:	E-UTRA (LTE) Band: 1/2/3/4/5/7/8/34/38/39/40/41			
	FDD-LTE Band 7: Tx: 2500-2570MHz, Rx: 2620-2690MHz			
Max.RF Output Power:	FDD-LTE Band 7: 22.46dBm, TDD-LTE Band 38: 24.25dBm,			
Modulation Type:	QPSK/16-QAM/64-QAM for LTE			
Antenna Type:	Spring antenna			
Antenna Gain:	0dBi			

1.2 Test Standards

The following report is prepared on behalf in accordance with ETSI EN 301908-1 V7.1.1, Electromagnetic compatibility and Radio spectrum Matters (ERM); Base Stations (BS), Repeaters and User Equipment (UE) for IMT-2000 Third-Generation cellular networks; Part 1: Harmonized EN for IMT-2000, introduction and common requirements, covering essential requirements of article 3.2 of the R&TTE Directive. And the harmonize standard ETSI EN 301 908-13 V7.1.1, IMT cellular networks; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive; Part 13: Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE) This standard refers to ETSI TS 134 121-1 V9.1.0(2010-07), which is based on ETSI Specification Universal Mobile Telecommunications System (UMTS); User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification (3GPP TS 34.121-1 version 9.1.0 Release 9). Every time when standard TS 134 121-1 is mentioned in this test report without version or date than ETSI TS 136 521-1 (V11.1.0) (07-2013) is the only valid reference.

The objective of the manufacturer is to determine compliance with ETSI EN 301 908-13 V7.1.1, IMT cellular networks; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive; Part 13: Evolved Universal Terrestrial Radio Access (E-UTRA) User Equipment (UE) covering essential requirements of article 3.2 of the R&TTE Directive.

Abbreviations and acronyms you may find in ETSI Technical Report ETR 350 November 1996.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which maybe results in lowering the emission/immunity should be checked to ensure that compliance has been maintained.

1.3 Test Facility

CNAS Registration No.: L10611

BST Testing (Shenzhen) Co.,Ltd. is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L10611. All measurement facilities used to collect the measurement data are located at No.7,New Era Industrial Zone, Guantian, Bao'an District,Shenzhen,Guangdong, China

1.4 Test Equipment List and Details

Kind of Equipment	Manufacturer	Туре	S/N	Cal Date	Due Date
	Equipment list of < She	nzhen SEM.Test Tec	hnology Co., Ltd.>	·	
Test SIM card	-		-	N/A	N/A
Wireless Communications Test Set	Agilent	E5515C	MY48365163	2019-06-04	2020-06-03
PSA Series Spectrum Analyzer	Agilent	E4440A	MY49420128	2019-06-04	2020-06-03
EPM Series Power Meter	Agilent	E4418B	MY50000188	2019-06-04	2020-06-03
E-Series Power Sensor	Agilent	E9304A	MY50000187	2019-06-04	2020-06-03
Mobile Communication DC Source	Agilent	66319D	MY43003946	2019-06-04	2020-06-03
Universal Switck Control Unit	Agilent	N9370A	MY46130177	N/A	N/A
RF Interface Box	Agilent	N1960-80103	MY45490191	N/A	N/A
GSM Filter Module	Agilent	N1960-80104	MY45490185	N/A	N/A
PSG Analog Signal Generator	Agilent	E8257D	MY44321116	2019-06-04	2020-06-03
ESG Vector Signal Generator	Agilent	E4438C	MY49070163	2019-06-04	2020-06-03
Temperature & Humidity Chamber	Agilent	TH-1P-B	WIT-05121302	2019-06-04	2020-06-03
Temperature/Humidity Meter	Agilent	ZC1-2	TR7-TH	2019-06-04	2020-06-03
Spectrum Analyzer	R&S	FSP	836079/035	2019-06-04	2020-06-03
Pre-amplifier	Agilent	8447F	3113A06717	2019-06-04	2020-06-03
Pre-amplifier	Compliance Direction	PAP-0118	24002	2019-06-04	2020-06-03
Trilog Broadband Antenna	SCHWARZBECK	VULB9163	9163-333	2019-06-04	2020-06-03
Horn Antenna	ETS	3117	00086197	2019-06-04	2020-06-03
Signal Generator	Rohde & Schwarz	SMR20	100047	2019-06-04	2020-06-03
Universal Radio Communication Tester	Agilent	CMW500	/	2019-06-04	2020-06-03
Signal Analyzer	Agilent	N9020A	/	2019-06-04	2020-06-03
Signal Generator	Agilent	N5182A	/	2019-06-04	2020-06-03

1.5 Environmental conditions for testing

General conditions (GC) as stated in ETSI TS 136 521-1 (V11.1.0) (07-2013) Annex G G1 This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

For extreme test conditions (TC2.2) the manufacturer declared the low voltage to 3.3 V (for Lithium-Ion battery). Higher extreme voltages of 4.2V.

If not other noted, the temperature was in range of $\pm 15^{\circ}$ C to $\pm 35^{\circ}$ C, the relative humidity was in the range of 20% to 95% and the DC power supply voltage was set to 3.7V (normal test conditions TC2.1).

Note: The relative humidity during all the tests is higher than the mentioned 20%-75% in ETSI TS 136 521-1 (V11.1.0) (07-2013) for test conditions. Since the weather situation in the testing area gives always this humidity level, all tests are performed within this range. No extra notification in the single test clauses is done.

Table 1 Parameters for normal test conditions TC2.1

Temperature:	+15°C to + 35°C
Voltage	230V
Humidity	20%-95%

Table 2 Parameters for extreme test conditions TC2.2

Temperature:	+55°C	+55°C	-10°C	-10°C
Voltage	207V	253V	207V	253V

For the Vibration requirements (TC4) as stated in ETSI TS 136 521-1 (V11.1.0) (07-2013) Annex G G2.3.1 the following conditions apply

Table 3 Parameter for vibration requirements TC4

Frequency in Hz	ASD in m ² /s ³
5-20	0,96
20-500	0,96 at 20 Hz, thereafter –5dB/octave

2. SUMMARY OF TEST RESULTS

Conformance requirement according to EN 301 908-13							
No	Reference	EN-R (note)	TS 136 521-1 Clause	Verdict	Note		
1	4.2.2	Transmitter maximum output power	6.2.2	Yes	Appendix A		
2	4.2.3	Transmitter spectrum emission mask	6.6.2.1	Yes	Appendix B		
3	4.2.4	Transmitter spurious emission	6.6.3	Yes	Appendix C		
4	4.2.5	Transmitter minimum output power	4.2.5	Yes	Appendix D		
5	4.2.6	Receiver adjacent channel selectivity	7.5	Yes	Appendix E		
6	4.2.7	Receiver blocking characteristics	7.6	Yes	Appendix F		
7	4.2.8	Receiver spurious response	7.7	Yes	Appendix G		
8	4.2.9	Receiver intermediation characteristics	6.7	Yes	Appendix H		
9	4.2.10	Receiver spurious emission	7.9	Yes	Appendix I		
10	4.2.11	Transmitter adjacent channel leakage power ratio	4.2.11	Yes	Appendix J		
	Conformance requirement according to EN 301 908-1						
12	4.2.2	Radiated emissions	1	Yes	1		
13	4.2.4	Control and monitoring functions	/	Yes	1		
Yes Test shall be performed N/A Test not applicable Detailed information's, which test data/plots are to find in Appendix 1.							

3. Essential radio test suites

3.1 Transmitter maximum output power

Clause 6.2.2 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.1.1 Definition and applicability

To verify that the error of the UE maximum output power does not exceed the range prescribed by the specified nominal maximum output power and tolerance.

An excess maximum output power has the possibility to interfere to other channels or other systems. A small maximum output power decreases the coverage area.

This test case applies to all types of E-UTRA UE release 8 and forward.

3.1.2 Conformance requirements

Test environment: normal, TL/VL,TL/VH,TH/VL,TH/VH (see section 1.6).

Frequencies to be tested: low range, mid range, high range; as specified in TS 136 508 [2], clause 4.3.1.

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.

4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The UE maximum output power shall be within the shown value in table 4.2.2.1.2-1.

E-UTRA Band	Power Class 3 (dBm)	Tolerance (dB)
1	23	±2,7
3	23	±2,7 (see note)
7	23	±2,7 (see note)
8	23	±2,7 (see note)
20	23	±2,7 (see note)
33	23	±2,7
34	23	±2,7
38	23	±2,7
40	23	±2,7
42	23	+3,0/-4,0
43	23	+3,0/-4,0
NOTE: For transmission within F _{UL_low} an maximum output tolerance limit by	bandwidths (TS 136 521-1 [1 d F_{UL_low} + 4 MHz or F_{UL_high} power requirement is relaxed (1.5 dB (tolerance = +2.7/-4.2	I], clause 5) confined , - 4 MHz and F _{UL_high} , the d by reducing the lower 2).

Table 4.2.2.1.2-1: UE power classes

NOTE 1: These requirements do not take into account the maximum power reductions allowed to the UE in subject to certain transmission conditions specified in TS 136 101 [4], clauses 6.2.3 and 6.2.4.

NOTE 2: The range of UE maximum output power for the various power classes are specified in TS 136 101 [4], clause 6.2.2. The values in table 4.2.2.1.2-1 correspond to the measurement limits taking into account the measurement uncertainty of measurement equipment (see clause 5.2).

3.1.3 Set up for testing

1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to table 6.2.2.1.4.1-1 of TS 136 521-1 [1]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

2) Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200 ms for the UE to reach PUMAX level.

3) Measure the mean power of the UE in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test.

4) Repeat for applicable test frequencies, channel bandwidths, operating band combinations and environmental conditions.

3.1.4 Test result

RESULT: Pass

3.2.1 Definition and applicability

Out of band emissions are unwanted emissions immediately outside the nominal channel resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a Spectrum Emission Mask and Adjacent Channel Leakage power Ratio.

This test case applies to all types of E-UTRA UE release 8 and forward.

3.2.2 Conformance requirements

Test environment: normal (see section 1.6).

Frequencies to be tested: low range, mid range and high range; as specified in TS 136 508 [2], clause 4.3.1.

Channel bandwidths to be tested: lowest, 5 MHz, 10 MHZ and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.

4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

The power of any UE emission shall fulfil requirements in tables 4.2.3.1.2-1 and 4.2.3.1.2-2.

Δf _{OOB}	(MHz)	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth
±0 to	o 1	-8,5	-11,5	-13,5	-16,5	-18,5	-19,5	30 kHz
±1 to	2,5	-8,5	-8,5	-8,5	-8,5	-8,5	-8,5	1 MHz
±2,5 t	02,8	-23,5	-8,5	-8,5	-8,5	-8,5	-8,5	1 MHz
±2,8	to 5	1	-8,5	-8,5	-8,5	-8,5	-8,5	1 MHz
±5 tr	0.6		-23,5	-11,5	-11,5	-11,5	-11,5	1 MHz
±6 to	10			-23,5	-11,5	-11,5	-11,5	1 MHz
±10 te	o 15		1		-23,5	-11,5	-11,5	1 MHz
±15 t	o 20				8	-23,5	-11,5	1 MHz
±20 t	o 25				5	100000	-23,5	1 MHz
NOTE 1: NOTE 2:	The first a 0,985 MH The first a equals to	nd last mea z. nd last mea 1,5 MHz an	asurement p asurement p id 2,0 MHz.	oosition wi oosition wi Similarly t	th a 30 kHz th a 1 MHz for other Δf	filter is at filter for 1 _{OOB} range	Δf _{OOB} equ MHz - 2,5 i s.	als to 0,015 MHz and MHz offset range is at Δf _{OOB}
NOTE 3: NOTE 4:	The meas edge of th For the 2, at Δf _{oos} e	urements a le channel. 5 MHz - 2,8 equals to 3	ire to be pei MHz offse MHz.	rformed at t range wit	oove the up h 1,4 MHz	oper edge o channel ba	of the chan andwidth, ti	nel and below the lower he measurement position is

Table 4.2.3.1.2-1: General E-UTRA spectrum emission mask,	E UTRA bands ≤ 3 GHz
---	----------------------

Table 4.2.3.1.2-2: General E-UTRA spectrum emission mask, 3 GHz < E-UTRA bands ≤ 4,2 GHz

e San orangeous	None-months	Spectru	m emissio	on limit (dE	3m)/ Chan	nel bandw	idth
Δf _{OOB} (MHz)	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth
0 to 1	-8,2	-11,2	-13,2	-16,2	-18,2	-19,2	30 kHz
1 to 2,5	-8,2	in a contraction			0.000	CONTRACT	1 MHz
2,5 to 2,8	-23,2		0.2	.0.2	.02	0.2	1 MHz
2,8 to 5		-0,2	-0,2	-0,2	-0,2	~0,2	1 MHz
5 to 6		-23,2	-11,2	-11,2	-11,2	-11,2	1 MHz
6 to 10			-23,2				1 MHz
10 to 15				-23,2			1 MHz
15 to 20					-23,2		1 MHz
20 to 25					-	-23,2	1 MHz
NOTE 1: The 0.01 NOTE 2: At th With NOTE 3: The belo NOTE 4: For posi	first and las 5 MHz and the boundary a 1 MHz fil measurem w the lower the 2,5-2,8 tion is at Δf	st measurer 0,985 MHz y of spectru ter is the in- ents are to r edge of th MHz offset OOB equals	ment posit m emissio side of +0, be perform e channel, range with s to 3 MHz	n limit, the 5 MHz and 1ed above 1 1 1,4 MHz o	first and la first and la - 0,5 MHz, the upper e channel ba	r is at ∆f _{OC} st measure respective adge of the ndwidth, th	_B equals to ment position dy. channel and e measurement

3.2.3 Set up for testing

1) SS sends uplink scheduling information via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.6.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

2) Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.

3) Measure the power of the transmitted signal with a measurement filter of bandwidths according to tables 4.2.3.1.2-1 or 4.2.3.1.2-2, as applicable. The center frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

4) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

3.2.4 Test result

RESULT: Pass

3.3.1 Definition and applicability

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions. The spurious emission limits are specified in terms of general requirements in line with Recommendation ITU-R SM.329-12 [i.5] and E-UTRA operating band requirement to address UE co-existence. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

3.3.2 Conformance requirements

Test environment: normal condition (see section 1.6).

Frequencies to be tested: low range, mid range, high range; see TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2].

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.

4) The UL Reference Measurement channels are set according to TS 136 521-1 [1]. 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The spurious emission limits in table 4.2.4.1.2-2 apply for the frequency ranges that are more than Δ fOOB (MHz) from the edge of the channel bandwidth shown in table 4.2.4.1.2-1.

The measured average power of spurious emission for general requirements shall not exceed the described values in table 4.2.4.1.2-2.

The measured average power of spurious emission for E-UTRA operating band specific requirements to protected bands shall not exceed the described values in tables 4.2.4.1.2-3 and 4.2.4.1.2-4.

Table 4.2.4.1.2-1: Δf_{OOB} boundary between E-UTRA channel and spurious emission domain

Channel bandwidth	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Δf _{OOB} (MHz)	2,8	6	10	15	20	25

Frequency range	Maximum level	Measurement bandwidth	Comment
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1 000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12,75 GHz	-30 dBm	1 MHz	
12,75 GHz ≤ f < 5 th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	See note
NOTE: Applies for Band 42	and Band 43.	0) (A)	

Table 4.2.4.1.2-2: General spurious emissions limits

NOTE 1: In order that the measurement of spurious emissions falls within the frequency ranges that are more than Δ fOOB (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be Δ f_{OOB} + MBW/2. MBW denotes the measurement bandwidth defined in table 4.2.4.1.2-2.

The additional requirements in table 4.2.4.1.2-3 apply for the frequency ranges that are more and less than Δf_{OOB} (MHz) from the edge of the channel bandwidth shown in table 4.2.4.1.2-1.

3.3.3 Set up for testing

1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.6.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

2) Send continuously Up power control commands in the uplink scheduling information to the UE until the UE transmits at PUMAX level.

3) For each applicable requirement in tables 4.2.4.1.2-2, 4.2.4.1.2-3 and 4.2.4.1.2-4; Measure the power of the transmitted signal with a measurement filter of bandwidths. The center frequency of the filter shall be stepped in contiguous steps according to the tables. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

4) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

3.3.4 Test result

RESULT: Pass

3.4 Transmitter minimum output power

Clause 4.2.5 of EN 301 908-13 V7.1.1 applies.

RESULT: Pass

3.4.1 Definition and applicability

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

3.4.2 Conformance requirements

Test environment: normal, TL/VL, TL/VH, TH/VL, TH/VH (see section 1.6)

Frequencies to be tested: low range, mid range and high range; see TS 136 508 [2].

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth, as specified in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.

4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The minimum output power measured shall not exceed the values specified in table 4.2.5.1.2-1.

Table 4.2.5.1.2-1: Minimum output power

	Channel bandwidth/minimum output power/measurement bandwidth								
	1,4 MHz	1,4 MHz 3,0 MHz 5 MHz 10 MHz 15 MHz 20 MHz							
Minimum output power	I	For carrier frequency $f \le 3,0$ GHz: ≤ -39 dBm For carrier frequency $3,0$ GHz $\le f \le 4,2$ GHz $\le -38,7$ dBm							
Measurement bandwidth	1,08 MHz	1,08 MHz 2,7 MHz 4,5 MHz 9,0 MHz 13,5 MHz 18 MHz							

3.4.3 Set up for testing

1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.3.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

2) Send continuous uplink power control "down" commands in the uplink scheduling information to the UE to ensure that the UE transmits at its minimum output power.

3) Measure the mean power of the UE in the associated measurement bandwidth specified in table 4.5.2.1-1 for the specific channel bandwidth under test. The period of measurement shall be the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test.

4) Repeat for applicable test frequencies, channel bandwidths, operating band combinations and environmental conditions.

Details of the test method can be found in TS 136 521-1 [1], clause 6.3.2.

3.4.4 Test result

RESULT: Pass

3.5 Receiver adjacent channel selectivity

Clause 7.5 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.5.1 Definition and applicability

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive an E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

3.5.2 Conformance requirements

Test environment: normal (see section 1.6).

Frequencies to be tested: mid range see TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS and interfering source to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.

4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.5.4.1-1.

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The throughput R_{av} shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1] under the conditions specified in table 4.2.6.2-3 and also under the conditions specified in table 4.2.6.2-3.

24		Channel bandwidth						
Rx Parameter	Units	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
ACS	dB	33,0	33,0	33,0	33,0	30	27	

Table 4.2.6.2-1: Adjacent channel selectivity

Dy Daramator	Unite			Channel b	andwidth		
RX Parameter	onits	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm			REFSEN	S + 14 dB		
PInterferer	dBm	REFSENS +45,5 dB	REFSENS +45,5 dB	REFSENS +45,5 dB	REFSENS +45,5 dB	REFSENS +42,5 dB	REFSENS +39,5 dB
BW Interferer	MHz	1,4	3	5	5	5	5
F _{Interferer} (offset)	MHz	1,4025	3,0075	5,0025	7,5075	10,0125	12,5025
NOTE 1: The trai TS 136 NOTE 2: The inte TS 136 NOTE 3: REFSE	nsmitter s 101 [4]. erferer cor 521-1 [1] NS as det	hall be set to 4 nsists of the Re with set-up ac fined in TS 136	dB below P _{CN} eference meas cording to clau 5 521-1 [1].	MAX_L OF PCMAX_ urement chann se C.3.1 of TS	L_CA as defined el specified in 136 521-1 [1].	in clause 6.2. clause A.3.2 o	5 in f

Table 4.2.6.2-2:	: Test parameters	for Adjacent channel	selectivity, Case	1
------------------	-------------------	----------------------	-------------------	---

Table 4.2.6.2-3: Test parameters for Adjacent channel selectivity, Case 2

Rx Parameter	Units			Channel b	andwidth		
2	8	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm	-56,5	-56,5	-56,5	-56,5	-53,5	-50,5
PInterferer	dBm			-2	25		
BW _{Interferer}	MHz	1,4	3	5	5	5	5
F _{Interferer} (offset)	MHz	1,4025	3,0075	5,0025	7,5075	10,0125	12,5025
NOTE 1: The tr TS 13 NOTE 2: The in TS 13	ansmitter 6 101 [4]. terferer o 6 521-1 [1	shall be set to onsists of the] with set-up a	24 dB below Reference me according to cl	P _{CMAX_L} or PcM asurement chai ause C.3.1 of T	nnel specified i S 136 521-1 [1	ned in clause 6 n clause A.3.2]].	of

3.5.3 Set up for testing

1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.5.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.5.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

3) Set the Downlink signal level to the value as defined in table 4.2.6.2-2 (Case 1). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.6.2-2 (Case 1) for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the Throughput measurement (obtain correct UE output power as specified in TS 136 521-1 [1]).

4) Set the Interferer signal level to the value as defined in table 4.2.6.2-2 (Case 1) and frequency below the wanted signal, using a modulated interferer as defined in TS 136 521-1 [1], annex D.

5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause

G.2 of TS 136 521-1 [1].

6) Set the Downlink signal level to the value as defined in table 4.2.6.2-3 (Case 2). Send Uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.6.2-3 (Case 2) for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the throughput measurement (obtain correct UE output power as specified in TS 136 521-1 [1]).

7) Set the Interferer signal level to the value as defined in table 4.2.6.2-3 (Case 2) and frequency below the wanted signal, using a modulated interferer as defined in TS 136 521-1 [1], annex D.

8) Measure the average throughput for a duration sufficient to achieve statistical significance according to TS 136 521-1 [1], annex G.

9) Repeat for applicable channel bandwidths in both Case 1 and Case 2.

10) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

3.5.4 Test result

RESULT: Pass

3.6 Receiver blocking characteristics

Clause 7.6 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.6.1 Definition and applicability

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

3.6.2 Conformance requirements

Test environment: normal (see section 1.6).

For In-band blocking, the frequencies to be tested are mid range as defined in TS 136 508 [2].

For Out of band blocking, the frequency to be tested is low or high range as defined in TS 136 508 [2].

For Narrow-band blocking, the frequencies to be tested are mid range as defined in TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1. Range 3 of out-of-band blocking is tested only with highest bandwidth.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS to the UE antenna connectors. 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.1 and uplink signals according to clauses H.1 and H.3.0.

4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.6.2.4.1-1.

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

With parameters specified in tables 4.2.7.2-1 and 4.2.7.2-2, the throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1].

With parameters specified in tables 4.2.7.2-3 and 4.2.7.2-4, the throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1], except for the spurious response frequencies.

For table 4.2.7.2-4 in frequency range 1, 2 and 3, up to $||_{()6/6,24maxRBN}$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1 MHz step size, where RBN is

the number of resource blocks in the downlink transmission bandwidth configuration. For these exceptions the requirements of clause 4.2.8 Spurious response are applicable.

With parameters specified in table 4.2.7.2-5, the throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1].

Rx Parameter	Units			Channel b	andwidth		
	35	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in	87 39		REFSENS	+ channel band	width specific	value below	945
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9
BW Interferer	MHz	1,4	3	5	5	5	5
Floffset, case 1	MHz	2,1125	4,5075	7,5125	7,5025	7,5075	7,5125
Floffset, case 2	MHz	3,5075	7,5075	12,5075	12,5125	12,5025	12,5075
NOTE 1: The tra TS 136	nsmitter sl 101 [4] (ta	hall be set to 4 able 7.3.1-2 w	4 dB below P _{CI} ith P _{CMAX_L} as	MAX_L at the min defined in clau	nimum uplink c Ise 6.2.5).	onfiguration sp	ecified in
NOTE 2: The inte TS 136	erferer cor 521-1 [1]	sists of the R with a set-up	eference meas according to cl	surement chanr ause C.3.1 of T	el specified in S 136 521-1 [1	clause A.3.2 o].	f
NOTE 3: REFSE	NS as def	ined in TS 13	6 521-1 [1].		5	@	

Table 4.2.7.2-1: In-band b	blocking parameters	
----------------------------	---------------------	--

Table 4.2.7.2-2:	In-band	blocking
------------------	---------	----------

E-UTRA	A band	Parameter	Units	Case 1	Case 2
		PInterferer	dBm	-56	-44
		F _{Interferer} (Offset)	MHz	= -BW/2 - F _{loffset, case 1} and = +BW/2 + F _{loffset, case 1}	≤ -BW/2 - F _{loffset, case 2} and ≥ +BW/2 + F _{loffset, case 2}
1, 3, 7, 8 34, 3	, 20, 33, 3, 40	FInterferer	MHz	(note 2)	F _{DL_low} - 15 to F _{DL_high} + 15
NOTE 1:	For cert band, b	ain bands, the unw ut within the first 1	anted mod 5 MHz belov	ulated interfering signal may n w or above the UE receive bar	not fall inside the UE receive nd.
NOTE 2:	For eac a) the	h carrier frequency carrier frequency -	the require 3W/2 - Floff	ement is valid for two frequenc set, case 1; and	ies:
NOTE 3:	Finterfei frequen	er range values for cies.	unwanted	modulated interfering signal a	re interferer center

Rx Parameter	Units	la como companya da como	Channel bandwidth						
	15,050,0545	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in Transmission	dDea	REFSE	NS + chan	nel bandv	nel bandwidth specific value below				
Bandwidth Configuration	aвm	¹ 6 6 6 7							
NOTE 1: The transmitter sl specified in TS 13	nall be set to 36 101 [4] (ta	4 dB below f able 7.3.1-2 w	P _{CMAX_L} at /ith P _{CMAX} I	the minim as define	ium uplink ed in claus	configura e 6.2.5).	tion		
NOTE 2: Reference measu NOTE 3: REFSENS as def	irement cha ined in TS 1	nnel is clause 36 521-1 [1].	A.3.2 of T	3 136 521	-1 [1].				

Table 4.2.7.2-3: Out-of-band blocking parameters

E-UTRA band	Parameter	Units	its Frequency			
			Range 1	Range 2	Range 3	
	PInterferer	dBm	-44	-30	-15	
1, 3, 7, 8, 20, 33, 34, 38, 40	F (CW)	MUT	F _{DL_low} - 15 to F _{DL_low} - 60	F _{DL_low} - 60 to F _{DL_low} - 85	F _{DL_low} - 85 to 1 MHz	
	Finterferer (CW)	MH2	F _{DL_high} + 15 to F _{DL high} + 60	F _{DL_high} + 60 to F _{DL high} + 85	F _{DL_high} + 85 to +12 750 MHz	

Table 4.2.7.2-4: Out-of-band blocking

Daramatar	Unit		Channel Bandwidth						
Parameter	Unit	1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
P	dBm	P _R	EFSENS + C	hannel-ban	dwidth speci	fic value bel	w		
' w	UDITI	22	18	16	13	14	16		
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55		
F _{uw} (offset for ⊿f = 15 kHz)	MHz	0,9075	1,7025	2,7075	5,2125	7,7025	10,2075		
NOTE 1: The trans specified NOTE 2: Reference	smitter shall I in TS 136 1 ce measuren IS as definer	be set a 4 dB 01 [4] (table 7 ent channel i	below P _{CM} .3.1-2 with s in clause	AX_L at the P _{CMAX_L} as A.3.2 of TS	minimum up defined in 136 521-1	link configu clause 6.2.5 [1].	nation).		

Table 4.2.7.2-5: Narrow-band blocking

3.6.3 Set up for testing

In-Of-Band Procedure

1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

3) Set the parameters of the signal generator for an interfering signal below the wanted signal in Case 1 according to tables 4.2.7.2-1 and 4.2.7.2-2 as specified in TS 136 521-1 [1].

4) Set the downlink signal level according to the table 4.2.7.2-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.7.2-1 for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].

5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].

6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal in Case 1 at step 3.

7) Repeat steps from 3 to 6, using interfering signals in Case 2 at step 3) and 6). The ranges of case 2 are covered in

steps equal to the interferer bandwidth. The test frequencies are chosen in analogy to TS 136 521-1 [1], table 7.6.1.4.2-1. 8) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Out-Of-Band Procedure

1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

3) Set the parameters of the CW signal generator for an interfering signal according to table 4.2.7.2-4 as specified in TS 136 521-1 [1]. The frequency step size is 1 MHz.

4) Set the downlink signal level according to the table 4.2.7.2-3. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.7.2-3 for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].

5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].

6) For table 4.2.7.2-4 record the frequencies for which the throughput does not meet the requirements. 7) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Narrow-Band Procedure

1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.3.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

3) Set the parameters of the CW signal generator for an interfering signal below the wanted signal according to table 4.2.7.2-5 as specified in TS 136 521-1 [1].

4) Set the downlink signal level according to the table 4.2.7.2-5. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.7.2-5 for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz < $f \le 4,2$ GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].

5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].

6) Repeat steps from 3 to 5, using an interfering signal above the wanted signal at step 3.

7) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

3.6.4 Test result

RESULT: Pass

3.7 Receiver spurious response

Clause 7.7 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.7.1 Definition and applicability

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out-of-band blocking limit as specified in table 4.2.7.2-4 is not met.

3.7.2 Conformance requirements

Test environment: normal (see section 1.6).

Frequencies to be tested: mid range; see TS 136 508 [2].

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS and interfering sources to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1, C.3.1 and uplink signals according to clauses H.1 and H.3.1.

4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.8.4.1-1.

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The throughput shall be ≥ 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1] with parameters specified in tables 4.2.8.2-1 and 4.2.8.2-2.

Table 4.2.8.2-1:	Spurious	response	parameters	
------------------	----------	----------	------------	--

Rx Parameter	Units	Channel bandwidth						
		1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in Transmission	dDee	REFSENS + channel bandwidth specific value below					ow	
Bandwidth Configuration	dBm	6	6	6	6	7	9	
NOTE 1: The transmitter	shall be set to	4 dB below f	P _{CMAX I} at	the minimu	m uplink cor	nfiguration s	pecified in	
TS 136 101 [4] (table 7.3.1-2	with P _{CMAX L}	as defined	in clause 6	.2.5).			
NOTE 2: Reference meas	surement cha	nnel is clause	A.3.2 of T	S 136 521-1	l [1].			
NOTE 3: REFSENS as de	efined in TS 1	36 521-1 [1].						

Table 4.2.8.2-2: Spurious Response

Parameter	Unit	Level
PInterferer (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

3.7.3 Set up for testing

1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.6.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

3) Set the parameters of the CW signal generator for an interfering signal according to table 4.2.8.2-2. The spurious frequencies are taken from step 5) records in clause 5.3.6.1.2.

4) Set the downlink signal level according to the table 4.2.8.2-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.8.2-1 for carrier frequency $f \le 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz $< f \le 4,2$ GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].

5) For the spurious frequency, measure the average throughput for a duration sufficient to achieve statistical significance.

3.7.3 Test result

RESULT: Pass

3.8 Receiver intermodulation charactistics

Clause 6.7 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.8.1 Definition and applicability

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

3.8.2 Conformance requirements

Test environment: normal (see section 1.6).

Frequencies to be tested: mid range; see TS 136 508 [2].

Channel bandwidths to be tested: lowest, 5 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS and interfering sources to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1, C.3.1 and uplink signals according to clauses H.1 and H.3.1.

4) The UL and DL Reference Measurement channels are set according to TS 136 521-1 [1], table 7.8.4.1-1.

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

The throughput shall be \geq 95 % of the maximum throughput of the reference measurement channels as specified in TS 136 521-1 [1] with parameters specified in table 4.2.9.2-1 for the specified wanted signal mean power in the presence of two interfering signals.

Rx Parameter	Units	Channel bandwidth						
		1,4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
Power in		R	EFSENS + char	nel bandwi	dth specific	value below	90) 	
Transmission Bandwidth Configuration	dBm	12	8	6	6	7	9	
P _{Interferer 1} (CW)	dBm		-	-46				
P _{Interferer 2} (Modulated)	dBm			-46				
BW Interferer 2		1,4	3			5		
F _{Interferer 1} (Offset)	MHz	-BW/2 - 2,1 / +BW/2 + 2.1	-BW/2 - 2,1 -BW/2 - 4,5			-BW/2 - 7,5		
F _{interferer 2} (Offset)	MHz		0112 . 4,5	2 × F _{interf}	erer 1	12 . 1,5		
NOTE 1: The trans in TS 136 NOTE 2: Referenc NOTE 3: The modu clause A. The interf bandwidtl	mitter sha 5 101 [4] (1) e measure ulated inter $3.2 ext{ of TS}$ fering modential $h \ge 5 ext{ MHz}$	Il be set to 4 dB able 7.3.1-2 with ement channel is rferer consists o 136 521-1 [1] wi Julated signal is	below P _{CMAX_L} a P _{CMAX_L} as de s clause A.3.2 of f the Reference th set-up accord 5 MHz E-UTRA	at the mini fined in cla TS 136 52 measurem ing to claus signal as d	mum uplink use 6.2.5). 11-1 [1]. Ient channel se C.3.1 of 1 lescribed in a	configuration specified in FS 136 521-1 annex D for	n specified I [1]. channel	
NOTE 4 REESEN	S as defin	ed in TS 136 52	1-1 [1]					

Table 4.2.9.2-1: Test	parameters	for Wide band	intermodulation
-----------------------	------------	---------------	-----------------

3.8.3 Set up for testing

1) SS transmits PDSCH via PDCCH DCI format 1A for C_RNTI to transmit the DL RMC according to TS 136 521-1 [1], table 7.8.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

2) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 7.8.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

3) Set the Downlink signal level to the value as defined in table 4.2.9.2-1. Send uplink power control commands to the UE (less or equal to 1 dB step size should be used), to ensure that the UE output power is within +0, -3,4 dB of the target level in table 4.2.9.2-1 for carrier frequency $f \leq 3,0$ GHz or within +0, -4,0 dB of the target level for carrier frequency 3,0 GHz $< f \leq 4,2$ GHz, for at least the duration of the throughput measurement as specified in TS 136 521-1 [1].

4) Set the Interfering signal levels to the values as defined in table 4.2.9.2-1, using a modulated interferer bandwidth as defined in annex D of TS 136 521-1 [1].

5) Measure the average throughput for a duration sufficient to achieve statistical significance according to clause G.2 of TS 136 521-1 [1].

6) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

3.8.4 Test result

RESULT: Pass

3.9 Receiver spurious emissions

Clause 7.9 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.9.1 Definition and applicability

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

3.9.2 Conformance requirements

Test Environment: normal (see section 1.6).

Frequencies to be tested: low range, mid range and high range; as specified in TS 136 508 [2], clause 4.3.1.

Channel bandwidth to be tested: highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect a spectrum analyzer (or other suitable test equipment) to the UE antenna connectors.

- 2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.
- 3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.1.
- 4) The DL Reference Measurement channels are set according to TS 136 521-1 [1].
- 5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.
- 6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.3-1

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	
12.75 GHz \leq f \leq 5 th harmonic of the upper frequency edge of the DL operating band in GHz	1 MHz	-47 dBm	Note 1
Note 1: Applies only for Bar Note 2: Unused PDCCH res by PDCCH_RA/RB	nd 22, Band 42 and sources are padde as defined in Anne	d Band 43. d with resource ex C.3.1.	element groups with power level given

Table 7.9.3-1: General receiver spurious emission requirements

3.9.3 Set up for testing

1) Sweep the spectrum analyser (or other suitable test equipment) over a frequency range from 30 MHz to 12,75 GHz and measure the average power of the spurious emissions.

2) Repeat step 1) for all E-UTRA Rx antennas of the UE. 3) Repeat for applicable test frequencies, channel bandwidths and operating band combinations.

Details of the test method can be found in TS 136 521-1 [1], clause 7.9.

3.9.4 Test result

RESULT: Pass

3.10 Transmitter adjacent channel power leakage ratio

Clause 4.2.11 of ETSI TS 136 521-1 (V11.1.0) (07-2013) applies.

RESULT: Pass

3.10.1 Definition and applicability

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency

3.10.2 Conformance requirements

Test Environment: normal, TL/VL, TL/VH, TH/VL and TH/VH, as specified in(see section 1.6).

Frequencies to be tested: low range, mid range and high range; see TS 136 508 [2].

Channel bandwidth to be tested: lowest, 5 MHz, 10 MHz and highest channel bandwidth as defined in TS 136 508 [2], clause 4.3.1.

Uplink/Downlink configurations: as specified in TS 136 521-1 [1]:

1) Connect the SS to the UE to the UE antenna connectors.

2) The parameter settings for the cell are set up according to TS 136 508 [2], clause 4.4.3.

3) Downlink signals are initially set up according to TS 136 521-1 [1], clauses C.0, C.1 and C.3.0 and uplink signals according to clauses H.1 and H.3.0.

4) The UL Reference Measurement channels are set according to TS 136 521-1 [1].

5) Propagation conditions are set according to TS 136 521-1 [1], clause B.0.

6) Ensure the UE is in State 3A-RF according to TS 136 508 [2], clause 5.2A.2.

NOTE: When reference is made to test set up, call set up and test mode, guidance on the applicability of these can be found in TS 136 521-1 [1], TS 136 508 [2] and TS 136 509 [i.11] respectively.

If the measured adjacent channel power is greater than -50 dBm then the measured E-UTRAACLR shall be higher than the limits in table 4.2.11.1.2-1.

	Ch	Channel bandwidth/E-UTRAACLR1/measurement bandwidth						
	1,4 MHz	3,0 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
E-UTRAACLR1	29,2 dB	29,2 dB	29,2 dB	29,2 dB	29,2 dB	29,2 dB		
E-UTRA channel	1,08 MHz	2,7 MHz	4,5 MHz	9,0 MHz	13,5 MHz	18 MHz		
Measurement bandwidth	20	202	2.5	105				
UE channel	+1,4 MHz or -1 4 MHz	+3 MHz or -3 MHz	+5 MHz or -5 MHz	+10 MHz or -10 MHz	+15 MHz or -15 MHz	+20 MHz or -20 MHz		

Table 4.2.11.1.2-1: E-UTRA UE ACLR

If the measured UTRA channel power is greater than -50 dBm then the measured UTRAACLR1, UTRAACLR2 shall be higher than the limits in table 4.2.11.1.2-2.

	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
UTRAACLR1	32,2 dB	32,2 dB	32,2 dB	32,2 dB	32,2 dB	32,2 dB
Adjacent channel centre frequency offset (in MHz)	0,7 + BW _{UTRA} /2 -0,7 - BW _{UTRA} /2	1,5 + BW _{UTRA} /2 -1,5 - BW _{UTRA} /2	2,5 + BW _{UTRA} /2 / -2,5 - BW _{UTRA} /2	5 + BW _{UTRA} /2 / -5 - BW _{UTRA} /2	7,5 + BW _{UTRA} /2 / -7,5 - BW _{UTRA} /2	10 + BW _{UTRA} /2 / -10 - BW _{UTRA} /2
UTRAACLR2	3 4 -33	1940	35,2 dB	35,2 dB	35,2 dB	35,2 dB
Adjacent channel centre frequency offset (in MHz)			2,5 + 3 × BW _{UTRA} /2 / -2,5 - 3 × BW _{UTRA} /2	5 + 3 × BW _{UTRA} /2 / -5 - 3 × BW _{UTRA} /2	7,5 + 3 × BW _{UTRA} /2 / -7,5 - 3 × BW _{UTRA} /2	10 + 3 × BWUTRA/2 -10 - 3 × BWUTRA/2
E-UTRA channel Measurement bandwidth	1,08 MHz	2,7 MHz	4,5 MHz	9,0 MHz	13,5 MHz	ी8 MHz
UTRA 5 MHz channel Measurement bandwidth (see note 1)	3,84 MHz	3,84 MHz	3,84 MHz	3,84 MHz	3,84 MHz	3,84 MHz
UTRA 1,6 MHz channel measurement bandwidth (see note 2)	1,28 MHz	1,28 MHz	1,28 MHz	1,28 MHz	1,28 MHz	1,26 MHz

Table 4.2.11.1.2-2: UTRA UE ACLR

3.10.3 Set up for testing

1) SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0 for C_RNTI to schedule the UL RMC according to TS 136 521-1 [1], table 6.6.2.3.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.

2) Send continuous uplink power control "up" commands in the uplink scheduling information to the UE to ensure that the UE transmits at PUMAX level.

3) Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in tables 4.2.11.1.2-1 and 4.2.11.1.2-2. The period of the measurement shall be at least the continuous duration of one sub-frame (1 ms). For TDD slots with transient periods are not under test. 4) Measure the filtered mean power for E-UTRA.

5) Measure the filtered mean power of the first E-UTRA adjacent channel.

6) Measure the RRC filtered mean power of the first and the second UTRA adjacent channel.

7) Calculate the ratio of the power between the values measured in step 4) over step 5) for E-UTRAACLR.

8) Calculated the ratio of the power between the values measured in step 4) over step 6) for UTRAACLR1, UTRAACLR2.

9) Repeat for applicable test frequencies, channel bandwidths, operating band combinations and environmental conditions.

Details of the test method can be found in TS 136 521-1 [1], clause 6.6.2.3.

3.110.4 Test result

PASS

3.12 Radiated emissions

Clause 4.2.2 of ETSI EN 301 908-1 V7.1.1 applies.

RESULT: Pass

3.12.1 Definition and applicability

This test assesses the ability of radio communications equipment and ancillary equipment to limit unwanted emissions from the enclosure port.

This test is applicable to radio communications equipment and ancillary equipment.

This test shall be performed on the radio communications equipment and/or a representative configuration of the ancillary equipment.

3.12.2 Conformance requirements

The frequency boundary and reference bandwidths for the detailed transitions of the limits between the requirements for out of band emissions and spurious emissions are based on ITU-R Recommendations SM.329-10 [3] and SM.1539-1 [4].

The requirements shown in the following table are only applicable for frequencies in the spurious domain.

Frequency	Minimum requirement (e.r.p.)/ reference bandwidth idle mode	Minimum requirement (e.r.p.)/ reference bandwidth traffic mode	Applicability
30 MHz ≤ f < 1 000 MHz	-57 dBm/100 kHz	-36 dBm/100 kHz	All
1 GHz ≤ f < 12,75 GHz	-47 dBm/1 MHz	-30 dBm/1 MHz	All
fc - 2,5 × 5 MHz < f < fc + 2,5 × 5 MHz		Not defined	UTRA FDD, UTRA TDD, 3,84 Mcps option, cdma2000, spreading rate 3
fc - 2,5 × BW _{Channel} MHz < f < fc + 2,5 × BW _{Channel} MHz		Not defined	E-UTRA FDD, E-UTRA TDD, UMB
fc - 2,5 × 10 MHz < f < fc1 + 2,5 × 10 MHz		Not defined	UTRA TDD, 7,68 Mcps option
fc - 4 MHz < f < fc + 4 MHz		Not defined	UTRA TDD, 1,28 Mcps option cdma2000, spreading rate 1
fc - 500 kHz < f < fc + 500 kHz		Not defined	UWC 136, 200 kHz option
fc - 250 kHz < f < fc + 250 kHz		Not defined	UWC 136, 30 kHz option
NOTE: fc is the UE transmit centr	e frequency.		

3.12.3 Set up for testing

Whenever possible the test site should be a fully anechoic chamber simulating the free-space conditions. EUT shall be placed on a non-conducting support. Mean power of any spurious components shall be detected by the test antenna and measuring receiver (e.g. a spectrum analyser).

At each frequency at which a component is detected, the EUT shall be rotated to obtain maximum response, and the effective radiated power (e.r.p.) of that component determined by a substitution measurement, which shall be the reference method. The measurement shall be repeated with the test antenna in the orthogonal polarization plane. NOTE: Effective radiated power (e.r.p.) refers to the radiation of a half wave tuned dipole instead of an isotropic antenna. There is a constant difference of 2,15 dB between e.i.r.p. and e.r.p. e.r.p. (dBm) = e.i.r.p. (dBm) - 2,15 (ITU-R Recommendation SM.329-10 [3], annex 1).

Measurements are made with a tuned dipole antenna or a reference antenna with a known gain referenced to an isotropic antenna. Unless otherwise stated, all measurements are done as mean power (RMS).

If a different test site or method is used, this shall be stated in the test report. The results shall be converted to the reference method values and the validity of the conversion shall be demonstrated.

3.12.4 Test result

Traffic Mode

Frequency range	Max. measure value (dBm)	Test result	
30MHz to 1GHz	<-36	Pass	
1GHz to 12.75GHz	<-30	Pass	

Idle Mode

Frequency range	Max. measure value (dBm)	Test result		
30MHz to 1GHz	<-57	Pass		
1GHz to 12.75GHz	<-47	Pass		

Measurement uncertainty	between 30 MHz and 180 MHz	+/-5.0dB
	between 180 MHz and 12,75 GHz	+/-3.0dB

Please refer to the following test plots and data

For LTE Band 7(Worst Case) Radiated Spurious Emissions(above 1GHz) Test Mode: Traffic Horizontal:

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBm)	(dBm)	(dB)	
1	2043.0769	-46.15	-30.00	-16.15	RMS
2	5394.6154	-50.00	-30.00	-20.00	RMS
3	6610.0000	-52.31	-30.00	-22.31	RMS

Vertical:

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBm)	(dBm)	(dB)	
1	2755.3846	-52.31	-30.00	-22.31	RMS
2	5246.1538	-49.23	-30.00	-19.23	RMS
3	11504.6154	-53.85	-30.00	-23.85	RMS

Note: only list the worst case for Traffic Mode<1GHz, Traffic Mode>1GHz, idle Mode<1GHz, idle Mode>1GHz.

3.13 Control and monitoring functions

Clause 4.2.4 of ETSI EN 301 908-1 V7.1.1 applies.

RESULT: Pass

3.13.1 Definition and applicability

This requirement, together with other control and monitoring technical requirements identified in the table of cross references in the applicable part, verifies that the control and monitoring functions of the UE prevent it from transmitting in the absence of a valid network.

This test is applicable to radio communications equipment and ancillary equipment in the operating band defined in the applicable part of this multipart harmonized standard.

This test shall be performed on the radio communications equipment and/or a representative configuration of the ancillary equipment.

3.13.2 Conformance requirements

The maximum measured power during the duration of the test shall not exceed -30 dBm.

3.13.3 Set up for testing

a) At the start of the test, the UE shall be switched off. The UE antenna connector shall be connected to a power measuring equipment, with the following characteristics:

- the RF bandwidth shall exceed the total operating transmit frequency range of the UE for operation with an applicable part;

- the response time of the power measuring equipment shall be such that the measured power has reached within 1 dB of its steady state value within 100 µs of a CW signal being applied;

- it shall record the maximum power measured.

NOTE: The equipment may include a video low pass filter to minimize its response to transients or Gaussian noise peaks.

b) The UE shall be switched on for a period of approximately fifteen minutes, and then switched off.

c) The EUT shall remain switched off for a period of at least thirty seconds, and shall then be switched on for a period of approximately one minute.

d) The maximum power emitted from the UE throughout the duration of the test shall be recorded. The results obtained shall be compared to the limits in clause 3.13.2 in order to prove compliance.

3.13.4 Test result

Test conditions		FDD-LTE Band 7 – Control and monitoring functions						
Т	V	Macaurad range		Test data (dBm)			Limit (dDm)	D
		Weasured range	1 st	2nd	3rd	4th		Result
Tnom(25°C)	Vnom(3.7V)	FDD-LTE Band 7 2500MHz to 2570MHz	-36.9	-36.5	-37.3	-37.0	-30	Pass

Measurement uncertainty	+/-1.0dB

The equipment complied with the requirement of this clause.

EXHIBIT 2 - EUT PHOTOGRAPHS

The End